Project Overview

Objective: Development of an IoT-based framework for energy optimization in industrial assembly lines.

Case study: An SMT PCB Assembly Line

Components:
- Data Aggregation Platform
- Data Analysis Engine and KPI displays
- Simulation Model for Prediction and Process Optimization

Sensor Deployment

An SMT-PCB Assembly Line

Data-flow Architecture

IDEAM (IoT Data Exchange & Analytics Middleware)

Data Store

Offline Analytics

Online Analytics

IoT Gateway

SPI

MODBUS

BLE

MQTT

UDP

HTTP

Physical IoT End Device

Logical IoT End Device

Parameterized Simulation Model with GUI support

Objective: Development of an IoT-based framework for energy optimization in industrial assembly lines.

Case study: An SMT PCB Assembly Line

Components:
- Data Aggregation Platform
- Data Analysis Engine and KPI displays
- Simulation Model for Prediction and Process Optimization

Sensor Deployment

An SMT-PCB Assembly Line

Data-flow Architecture

IDEAM (IoT Data Exchange & Analytics Middleware)

Data Store

Offline Analytics

Online Analytics

IoT Gateway

SPI

MODBUS

BLE

MQTT

UDP

HTTP

Physical IoT End Device

Logical IoT End Device

Key Performance Indicators and Insights from Data

A Snapshot of Vibration Sensor Data

Machine-wise break-up of energy over a week

Performance Metrics Tracked:
- Machine-wise idle-times, latencies and energy consumption
- System Throughput
- Machine Breakdowns, Shifts.

Insights: The Re-flow oven accounts for more than 85% of the total energy consumption on average, whereas the Pick and Place machines are often the throughput bottlenecks.

Energy Optimization and Ongoing Study Items

- Impact of buffering between the Pick and Place and Re-flow operations (preliminary results based on simulation indicate that up-to 2X reduction in energy is possible via buffer insertion.)
- Design space exploration of line configuration
- Optimal inspection and re-calibration policies
- Human-in-the-loop modelling
- Dashboard for real-time operational support