
An Approach to Discrete Parameter Design Space
Exploration of Multi-core Systems using a Novel

Simulation Based Interpolation Technique

Neha V. Karanjkar and Madhav P. Desai

Department of Electrical Engineering, Indian Institute of Technology Bombay
Email: {nehak,madhav}@ee.iitb.ac.in

Abstract—We propose a new approach to simulation-based
design optimization of multi core systems, over a large number
of discrete parameters. In this approach, we embed the discrete
parameter space into an extended continuous space and apply
continuous space optimization techniques over the embedding
to search for optimal designs. Such continuous space techniques
often scale well with the number of parameters. The embedding
is performed using a novel simulation-based ergodic interpola-
tion technique, which, unlike spatial interpolation methods, can
produce the interpolated value within a single simulation run
irrespective of the number of parameters. In a characterization
study, we find that the interpolated performance curves are
continuous, piecewise smooth and have low statistical error. We
use the ergodic interpolation-based approach to solve a multi-
core design optimization problem with 31 design parameters.
Our results indicate that continuous space optimization using
ergodic interpolation-based embedding can be a viable approach
for large multi-core design optimization problems.

I. INTRODUCTION

Design space exploration of multi-core systems involves

optimizing performance/cost over a large number of design

parameters, most of which are discrete-valued (for example,

buffer sizes, associativity and size of caches, number of

pipelined stages in interconnects etc.). This optimization is

hard because the accurate evaluation of a potential design

choice is computationally expensive, involving detailed cycle-

accurate system simulation to predict performance metrics

such as execution time and energy consumption [1]. Further,

the number of design parameters is likely to keep increasing as

chip complexity rises. Existing techniques for multi-core de-

sign exploration involve searching for optimal designs directly

over the discrete parameter space (for example exhaustive enu-

meration, design of experiments, randomized search methods

such as simulated annealing and genetic algorithms), or use a

meta-model of the system (in the form of an artificial neural

network, regression model or polynomial interpolation etc.),

constructed by systematically sampling the design space, to

guide the search during optimization.

If the discrete parameter space can be embedded into a

larger continuous parameter space, then continuous space

techniques can, in principle, be applied to the system op-

timization problem. Such continuous space techniques often

scale well with the number of parameters. However, descent-

based continuous optimization methods find local minima

and random restarts may be needed to search for the global

optimum. Further, in order to convert the continuous-space

solution back to discrete-space, rounding needs to be employed

with care. The idea of applying continuous space optimization

to solve discrete optimization problems using an embedding,

has been described in the past in chemistry [2] and applied

mathematics [3]. To our knowledge this approach has not been

investigated for computer system optimization.

We present a novel simulation-based Ergodic Interpolation
technique for embedding the discrete parameter space into

a continuous space efficiently. The technique is based on

randomization of the simulation model in order to obtain an

interpolation of performance/cost functions, and, unlike spatial

interpolation methods, can produce the interpolated value at a

point within a single simulation run. We describe the technique

in Section III. We have implemented this interpolation scheme

in a cycle-accurate multi-core system simulator, and charac-

terized it on a problem instance with twelve design variables.

We observe that the statistical error in the interpolation is

small, and the interpolated function is continuous and piece-

wise smooth.

We validate the ergodic interpolation-based optimization

approach on a large multi-core design optimization problem

with 31 discrete parameters. The system being optimized is an

eight-core NUMA multiprocessor running the NAS benchmark

kernels. The objective function to be minimized is a weighted

sum of cost and performance metrics where weights are varied

to get cost-performance trade-off curves. Continuous optimiza-

tion (using an implementation of COBYLA from Python’s

SciPy library) is performed over the embedded objective func-

tion. Starting from multiple random initial points, we ran the

optimization algorithm with a limit of 300 objective function

evaluations per optimization run. The solution converged to

a local optimum in all cases and the improvement in the

objective ranged from 1.3X to 12.2X over the initial guess

across multiple runs. Further, the spread in objective values at

the optimum, across multiple runs was low. Cost-performance

trade-off curves generated from these optimization runs pro-

vide clear indicators for the optimal system configuration. The

results (presented in Section IV) indicate that continuous space

optimization using ergodic interpolation-based embedding can

be a viable approach to solve design exploration problems with

several discrete parameters.

IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539/15 $31.00 © 2015 IEEE

DOI 10.1109/MASCOTS.2015.26

85

Fig. 1. System Model

II. SYSTEM MODEL AND WORKLOAD

For all simulations presented in this study, we use a cycle-

accurate simulation model of a multi-core, multi-processor

NUMA (Non Uniform Memory Access) system as shown in

Figure 1. The system consists of m processors, with n cores

per processor. Each core implements the Sparc V8 instruction

set. Timing of load/store accesses flowing through the memory

subsystem is modeled in detail and other instructions are as-

sumed to execute in one cycle. The cache subsystem comprises

per-core split L1 I/D and unified L2 caches and a shared L3

cache. Coherency is maintained using a hierarchical directory-

based MESI protocol. Interconnect between successive levels

in the memory hierarchy is a full-crossbar with parametrized

link delays. The NUMA effect is modeled by assigning

different delays to links connecting a processor to its local

and remote memory nodes. For all simulations we have used

m = 2 and n = 4. For the optimization study presented in

Section IV we have used four kernels from the NAS parallel

benchmark suite (NPB) [4] (listed in Table I) as workload.

TABLE I
NAS BENCHMARK KERNELS AND PROBLEM SIZES

Embarrassingly Parallel 216 3-D FFT PDE solver 163

Multigrid 163 Integer Sort 216

A. Embedded Parameters

We consider four types of discrete-valued parameters for a

preliminary validation of our optimization approach. We give

a precise definition of these parameters in this section. The

system can be thought of as being composed of three basic

components: modules, wires and queues. Modules represent

behavioral components in the system such as caches, cores,

memory modules and interconnect schedulers, wires represent

interconnect links with a parametrizable number of pipelined

stages, and queues are used to represent buffering at various

places in the system. The activity in the system (for example,

memory accesses and coherence requests) is modeled by jobs
and movement of data-tokens. A job represents a behavioural

action by a module which can consume and produce data-

tokens. Data-tokens are used to encapsulate information. Jobs

are triggered inside modules by the availability of the nec-

essary data-tokens. The completion of a job may produce

new data-tokens. Queues are used to buffer data-tokens. Each

module m, wire w and queue q in the system has the following

parameters :

• queue capacity C(q) : Each queue/buffer in the system

q has a single parameter C(q). In each cycle, the queue q
will accept new data-tokens as long as the total number

of data-tokens in the queue is ≤ C(q).
• module throughput N(m) : a module m can accept

new jobs each cycle as long as the number of jobs being

processed by it is ≤ N(m).
• module delay D(j,m) : If j is a job that is accepted by

module m, then D(j,m) is the number of cycles it takes

for the module to execute the job. The job is removed

from the input queue as soon as it is accepted by the

module and place is reserved for its output in the output

queues. Its output becomes visible in the output queues

only after D(j,m) cycles.

• wire latency L(w) : A wire w has a single parameter

L(w) that represents the number of register stages in

the wire. A wire can accept at most one data-token

each cycle, and each token takes L(w) cycles to pass

through the wire. The wire can accept a token only after

reserving a place for it in the output queue to which it

is connected. The token becomes visible in the output

queue after L(w) cycles.

To summarize: our cycle accurate simulation model has the

discrete parameters C(q), N(m), D(j,m) and L(w) for each

queue q, module m and wire w in the system. We describe an

embedding for these parameters in the next section.

III. ERGODIC INTERPOLATION

Consider a multi-core system with n discrete-valued design

parameters. Let X = (x1, x2, ...xn) be a vector of parameter

values. X ∈ ΩD where ΩD is the discrete parameter space.

Our cycle based simulation model allows us to evaluate some

objective function f : ΩD → R. The function f needs to be

optimized.

Our approach is to extend f to produce a continuous

function f̂ which is an interpolation of f defined over a con-

tinuous space, and then apply continuous space optimization

techniques to minimize f̂ . Thus we wish to find an interpo-

lation f̂ : ΩC → R where ΩC is the extended continuous

parameter space (ΩD ⊂ ΩC ⊆ R
n). Spatial interpolation

(performed using standard multivariate interpolation methods

such as Lagrange interpolation, Simplex interpolation etc.) is

inefficient for the purpose of obtaining f̂ , because evaluating

f̂(Y) at each point requires multiple expensive simulations.

Instead, we propose an ergodic interpolation method which

can produce the value f̂(Y) at a point Y ∈ ΩC within a

single simulation. The method relies on a randomization of the

simulation model to obtain f̂(Y) directly. It builds on a sen-

sitivity measurement technique described in [5] for producing

small (real-valued) perturbations to discrete-valued parameters

in a simulation model. Let Y = (y1, y2, . . . , yi, . . . , yn) be a

86

point in the continuous parameter space (Y ∈ ΩC), at which

we wish to evaluate the interpolated objective function f̂(Y).
We replace each discrete parameter i in the cycle-accurate

simulation model with a discrete random variable, whose value

changes over time within a single simulation run, such that its

average value over the entire simulation approaches yi ∈ Y .

The set of time-averaged values of all parameters approach

(y1, y2, . . . , yn) and the cost/performance values obtained by

simulating this randomized model gives us the interpolated

value f̂(Y). Thus, unlike spatial interpolation methods which

perform an averaging in space, ergodic interpolation works by

averaging in time. We define the embedding for C(q), N(m),
D(j,m) and L(w) parameters (defined in Section II-A) as

follows: Let p be a discrete-valued parameter. Suppose we

wish to assign a real value v ∈ R to the parameter p in

the embedded model. We replace p with an integer-valued

Bernoulli random variable γ(v), whose value changes every
cycle with the following distribution:

γ(x) =

⎧⎨
⎩
�x� with probability x− 	x

	x
 with probability 1− (x− 	x
)
If x is an integer, then γ(x) = x. If x is a fixed real number,

the value of γ(x) alternates between 	x
 and �x�, such that its

expected value is x. We replace each C(q), N(m), D(j,m)
and L(w) parameter in the model with random variables

γ(C(q)), γ(N(m)), γ(D(j,m)) and γ(L(w)) respectively.

Thus real values can be assigned to the parameters. For

example, if C(q) = 10.3, then at each cycle γ(C(q)) will be

11 with probability 0.3 and 10 with probability 0.7, so that,

during simulation, the queue will have a capacity 11 for 30%

of the time, and a capacity 10 for 70% of the time.

Randomization introduces a statistical error in the measured

value of f̂(Y). This error can be controlled by using longer

workloads, or by averaging results from multiple simulation

runs. For the workloads used in this study, we estimated the

standard deviation in f̂ at a few points in the design space by

generating multiple samples. The standard deviation of f̂(Y)
relative to the mean was between 0.009% to 0.019%. These

error values are small and therefore a single simulation run

was sufficient to measure the interpolated value.

A. Well-behavedness of Ergodic Interpolation

We perform a simulation-based characterization study to

check whether the interpolated performance function f̂(Y)
is smooth, and suited to continuous space optimization. The

objective function f̂(Y) is the total execution time for a

parallel memory-test workload evaluated using simulation of

the cycle accurate model described in Section II. Design

parameters are D, N and C(for output buffers) (as introduced

in Section II-A) in L1, L2, L3 caches and main memory. Thus

the extended continuous parameter space has 12 dimensions.

We consider ten random straight lines passing through the 12-

dimensional continuous parameter space. f̂(Y) is sampled at

200 uniformly spaced points along each line. We perform mul-

tiple simulation runs at each point with distinct randomization

seeds to measure the mean and standard error values in f̂ .

In Figure 2, we plot mean f̂ along two of the ten random

lines passing through the parameter space. We observe that

along each line, the interpolated function is continuous and

piece-wise smooth. The plots for other lines are similar. The

measured relative standard error values are less than 0.01%.

Thus the interpolated function obtained using our ergodic

interpolation technique seems to be well-behaved and suitable

for the application of continuous optimization techniques.

0 50 100 150 200
3.0

3.5

4.0

4.5
×107 Mean f̂ (Y)

line 1

line 2

Fig. 2. Mean f̂(Y) values along two random straight lines passing through
the multi-dimensional continuous parameter space. Each line is sampled at
200 uniformly spaced points.

IV. CONTINUOUS OPTIMIZATION USING ERGODIC

INTERPOLATION

We validate the ergodic-interpolation based optimization

approach on a multi-core design optimization problem with

31 parameters. The design parameters are :

• throughput (N) and delay (D) of L1I, L1D, L2, L3 caches

and main memory

• interconnect latency (L) in switches X1, X2 and X3

• input and output queue-sizes (Cinq and Coutq) in L1I,

L1D, L2, L3 caches, main memory and switches X1, X2

and X31.

The parameters are embedded into a continuous space

using ergodic interpolation. The objective function f̂(Y) is

a weighted sum of performance and cost measures. The per-

formance measure execution time(Y) is the sum of execution

times for four benchmark kernels (listed in Table I) evaluated

using the cycle-accurate simulation model. We represent cost

using a synthetic function cost(Y) which increases as each

parameter is varied in the direction of improving performance.

The cost function is defined as cost(Y) =
∑

i xi +
∑

j
100
dj

where dj and xi are delay and non-delay parameters normal-

ized to lie in the range [1, 100]. The objective function is:

f̂(Y) = execution time(Y) + α× cost(Y)

Where α is a weighting factor. Optimization is performed with

multiple values of the weight factor α ∈ {0, 104, 105, 106}
to get cost/performance trade-off curves. We use an imple-

mentation of COBYLA [6], a derivative-free, noise insensitive

continuous space optimization algorithm from Python’s SciPy

1In the switch X3, paths to local and remote nodes are assigned different
latencies (L) and output queue-sizes (Coutq) to model the NUMA-effect

87

−500 0 500 1000 1500 2000 2500 3000
cost

2

3

4

5

6

7

8

9

p
er

fo
rm

an
ce

(e
x
ec

u
ti

o
n

ti
m

e
in

cy
cl

es
)

×107 cost/performance tradeoff

α = 0

α = 104

α = 105

α = 106

Fig. 3. Performance and cost values at the optimum for multiple optimization
runs (as α and initial points are varied). Each point represents the result of
a single optimization run with (x,y) coordinates showing (cost, performance)
values at the optimum.

library to minimize f̂(Y). Since the algorithm searches for

local minima, we use multiple runs of COBYLA starting from

distinct randomly-chosen initial points in the design space.

For each value of α, we perform eight optimization runs

starting from distinct initial points. A single optimization run

is allowed to make at most 300 function evaluations.

We observe that for all optimization runs, the objective

function values converge to a local optimum within 300

function evaluations. Further, the spread in objective values

across optimization runs with different initial points is small

for most cases, as summarized in Table II. Improvements

over the initial guess range from 1.3X to 12.2X across all

optimization runs.

TABLE II
OBJECTIVE FUNCTION VALUES AT THE OPTIMUM FOR EACH VALUE OF α

α = 0 α = 104 α = 105 α = 106

Objective values at the optimum across eight COBYLA runs

best 2.916× 107 3.697× 107 5.753× 107 1.218× 108

worst 2.922× 107 4.020× 107 7.401× 107 2.836× 108

mean 2.917× 107 3.836× 107 6.305× 107 1.608× 108

std dev 0.08% 3.08% 8.59% 35.66%

Objective values at the optimum found by ASA

ASA 2.916× 107 3.694× 107 6.063× 107 1.247× 108

In Figure 3, we plot cost and performance values at the

optimum for each of the optimization runs (as α and initial

points are varied). Each point in the plot represents the result

of a single optimization run with (x,y) coordinates showing

(cost, performance) values at the optimum. The plot shows

a clear knee which can be used to select the optimal system

configuration for maximum performance.

We compare the locally-optimum solutions found by

COBYLA to a global-optimum produced by an Adaptive

Simulated Annealing (ASA) search over discrete parameter

space, with limit of 1000 function evaluations. We use a

Python binding of a well-established ASA implementation

[7]. The objective values at the optimum found by ASA are

listed in the last row in Table II. We observe that most of

the COBYLA runs produce solutions that are close to (within

10% of) the global optimum reported by ASA.

V. CONCLUSIONS

We have described a technique using which discrete pa-

rameter multi-core systems can be optimized using contin-

uous space optimization schemes. The technique relies on

a novel ergodic interpolation scheme based on randomizing

the discrete parameter cycle-accurate simulation model of the

multi-core system. The interpolated performance function is

continuous, has low statistical error, and was observed to be

piece-wise smooth. Using this ergodic interpolation technique,

we have applied a standard continuous space optimization

algorithm to find optimal designs for a 31-parameter multipro-

cessor system exercised with a subset of the NAS benchmarks.

The optimization algorithm converged to a local optimum

within 300 function evaluations and produced substantial

improvements ranging from 1.3X to 12.2X over the initial

guess in the cases that we have tried. Cost performance

curves can also be generated using different weightings of the

performance and cost components in the objective function.

More work is needed to completely characterize the im-

pact of rounding on the quality of the results obtained,

and on the application of the ergodic interpolation technique

to other discrete parameters such as cache size/associativity

and processor core issue-width/clock-frequency. However, our

preliminary investigations indicate that ergodic interpolation

based optimization can be an effective and practical approach

for the design space exploration of multi-core systems.

REFERENCES

[1] M. Gries, “Methods for Evaluating and Covering the Design Space during
Early Design Development,” Integration, the VLSI journal, vol. 38, no. 2,
2004.

[2] S. K. Koh, G. Ananthasuresh, and S. Vishveshwara, “A Deterministic
Optimization Approach to Protein Sequence Design Using Continuous
Models,” The International Journal of Robotics Research, vol. 24, no.
2-3, Feb. 2005.

[3] H. Wang and B. W. Schmeiser, “Discrete Stochastic Optimization using
Linear Interpolation,” in 2008 Winter Simulation Conference. IEEE, Dec.
2008.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS Parallel Benchmarks Summary and Preliminary Results,” in
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’91. New York, NY, USA: ACM, 1991.

[5] G. Hazari, M. P. Desai, and G. Srinivas, “Bottleneck Identification Tech-
niques Leading to Simplified Performance Models for Efficient Design
Space Exploration in VLSI Memory Systems,” in 2010 23rd International
Conference on VLSI Design. IEEE, 2010.

[6] M. Powell, “On Trust Region Methods for Unconstrained Minimization
without Derivatives,” Mathematical Programming, vol. 97, no. 3, 2003.

[7] L. Ingber, “Adaptive Simulated Annealing (ASA): Lessons Learned,”
Control and Cybernetics, vol. 25, 1996.

88

