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ABSTRACT
A real-time testbed that emulates a large number of IoT end-points
generating traffic to the middleware/application layers can be used
for debugging and performance evaluation of the smart-city soft-
ware platforms prior to deployment. We propose an architecture
for such a simulation testbed based on Python’s SimPy library. The
simulated IoT end-points communicate with the middleware in
real-time and can also interact directly with each other and with a
common shared environment. This makes the testbed particularly
suited for modeling system-wide scenarios such as synchronized
faults and power outages.

CCS CONCEPTS
• Computing methodologies → Simulation tools.
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1 INTRODUCTION
The ease of collection and sharing of data is a key requirement for
future smart-city applications. A common middleware platform
with standardized, open APIs that decouples the IoT end-points
(sensors/devices) from applications is necessary for promoting inter-
operability in smart city ecosystems. Thus a typical smart-city IoT
system can be thought of as consisting of four layers: a device/end-
point layer, a network layer, a middleware layer and an application
layer. The design and implementation of each of the layer requires
a suitable test infrastructure. For development of the middleware
and application layers, a testbed needs to emulate thousands of IoT
end-points generating data and responding to control messages
sent via the middleware in real-time. Such a testbed must be able
to exercise all functional aspects of the middleware and should
allow for flooding the middleware with simultaneous requests to
evaluate its performance under realistic loading conditions. While
real hardware end-points can be deployed within a testbed, their
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Figure 1: Architecture of the simulation testbed

numbers are limited by cost. Instead, a hybrid testbed consisting
of a large number of simulated entities and a smaller number of
real hardware nodes is a practical alternative. Several commercial
tools such as IoTIFY[3] and Amazon Web Services’ IoT device sim-
ulator offer the means to simulate multiple end-points generating
messages to a cloud application. While these tools provide an easy-
to-use web interface, they are not as expressive as a discrete-event
simulation framework. It is not possible, for instance, to model di-
rect interactions between the end-points or to have heterogeneous
systems with multiple types of devices. The use of a discrete-event
simulation engine for modeling IoT systems has been described in
works such as [1] and [2]. However, their focus is not on real-time
testing of the middleware/application platforms.

In this paper we propose an architecture for a simulation testbed
based on SimPy[5], a popular and expressive Python library for
discrete-event simulations. The testbed allows real-time,middleware-
in-the-loop simulations for functional and performance testing
of the smart-city software platforms. The unique feature of this
testbed is a systematic means of simulating distributed, large-scale
phenomena (such as synchronized faults and power outages) and
the ability to model direct interactions between end-points and a
common shared environment. This is essential for functional test-
ing in applications like smart grids and traffic management where
the actuation of an IoT end-point can affect the state of the shared
environment which can in-turn affect the sensor readings of the
nearby end-points.
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2 ARCHITECTURE
The testbed consists of multiple device entities which publish data
and respond to control messages sent by applications over the
middleware. Additionally, application entities (that consume data
published by devices) can also be simulated within the same en-
vironment, enabling the testing of the middleware for multiple
producer/consumer configurations. The testbed architecture is il-
lustrated in Figure 1. The software for the testbed consists of the
following main components:

(1) Device models: the software includes an extensible library
of behavioral models for the device/application entities. These mod-
els are described as Python classes with attributes to store state in-
formation and a method to describe its main behavior. This method
is invoked as a SimPy process at the start of simulation. Constructs
such as time-delays and concurrent actions can be described within
the behavior using constructs provided by SimPy. The user can
populate the testbed with instances of these classes directly or can
create derived classes to model end-points at the desired level of
detail.
(2) Communication interfaces: Each device/app entity owns in-
terfaces for communicating with the middleware asynchronously.
The interface consists of a queue and a helper thread. For example,
to publish a message, the device entity pushes the message into a
queue. The message is then picked up by the helper thread and sent
to the middleware using routines provided by the Middleware’s
SDK. Similarly, the helper thread responsible for receiving mes-
sages gets the messages from the middleware either by polling or
by means of a call-back method and relays them to the entity via a
queue. Such an architecture decouples the communication/network
latencies from the simulation execution.
(3) Injector modules: An Injector module is the most important
and unique feature of this architecture. Injectors are useful in mod-
eling global phenomena and evolving environmental conditions
(that can affect multiple end-points simultaneously). An Injector
module is a Python object that resides within the same simulation
environment and stores references to each of the device entities. It
also has a behavior() method that is invoked as a SimPy process
when simulation begins. The state-variables inside the device in-
stances can be directly viewed/set from the Injector module. Thus,
the Injector can be used to set sensor values, inject faults and activ-
ity or change the state of the devices at specific time instants. (No
race conditions can arise in doing so because of the sequential exe-
cution at each time-step within the simulation engine.) As a simple
example, Figure 2 shows the pseudo-code for an Injector module
that injects faults into groups of devices at certain time instants, and
another module that sets the devices’ sensor values according to a
linear pattern in space and time. Without the existence of such an
Injector feature, the description of global phenomena would have
to be broken down and incorporated into the local, device-level
descriptions, making the testbed inflexible and the testing process
tedious and prone to errors.

3 PRELIMINARY RESULTS
Wehave used the simulation testbed for functional and performance
testing of the IUDXMiddleware[4]. For a reasonably detailed model
of smart-streetlight entities operating at 1 Hz, we observe that the

Behavior                           FAULT INJECTOR
{
  wait until current_time == 100
  inject fault “power_failure” in devices 1 to 100
  wait for time_interval(randint(100,200))
  inject fault “sensor_failure” in devices 101 to 200
  ...
}

Behavior                           FAULT INJECTOR
{
  wait until current_time == 100
  inject fault “power_failure” in devices 1 to 100
  wait for time_interval(randint(100,200))
  inject fault “sensor_failure” in devices 101 to 200
  ...
}

Behavior                           STATE INJECTOR
{ 
  while(True)
  { wait for time_interval(1)
    t = current_time
    for i=1 to 100
      inject sensor value (100+t+10*i) in device i 
  }
}

Behavior                           STATE INJECTOR
{ 
  while(True)
  { wait for time_interval(1)
    t = current_time
    for i=1 to 100
      inject sensor value (100+t+10*i) in device i 
  }
}

Figure 2: Examples of Injector modules

testbed scales well up to 103 devices within a single process. While
the number of devices that can be modeled within a single SimPy
environment is much larger, the number of simulated entities is cur-
rently limited by the communication channels that can be opened
within the process simultaneously. This number can be scaled fur-
ther by having multiple SimPy simulations running as separate
processes (on separate machines) and synchronizing loosely with
respect to real-time via a service such as NTP. In this case, direct
interactions between entities are restricted to those existing within
the same simulation environment. Efforts in this direction are on-
going.
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