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ABSTRACT

This paper presents a simulation-based technique for em-
bedding the discrete-valued parameters in queueing systems
(such as buffer capacities) into a continuous space. The sig-
nificance of this technique is that it enables the direct appli-
cation of existing descent-based continuous optimizers for
solving simulation optimization problems efficiently over a
discrete parameter set. The embedding technique is based
on a randomization of the simulation model itself, and is ap-
plicable when the objective function is a long-run average
measure. Unlike spatial interpolation, the computational cost
of this embedding is independent of the number of parame-
ters in the system, making the approach well-suited to high-
dimensional problems. We present a theoretical basis for this
embedding technique and demonstrate its utility in the opti-
mization of discrete-time queueing systems.

INTRODUCTION

The use of simulation is often necessary in the optimiza-
tion of complex real-life queueing networks. Such queueing
networks typically have discrete valued parameters such as
queue capacities, the number of servers and service-times in
slotted-time queues. More concretely, consider a queueing
system with a parameter set X = (x1, x2, . . . , xn) where
each xi can take integer values between some fixed bounds.
The set of all possible values that X can take is the n-
dimensional, discrete parameter space ΩD. Let f : ΩD → R
be some cost/performance measure of the system that we
wish to optimize. In many problems, f may be composed
of long-run average measures such as average throughput,
average waiting time per customer or blocking probabilities.
An analytical expression for f is rarely available and given
X , f(X) can only be measured using a simulation of the
system. The measurements are noisy as each simulation run
has finite length. We are motivated by the problem of find-
ing an X∗ ∈ ΩD that minimizes f(X). This is a Discrete-
Parameter Simulation Optimization (DPSO) problem. The
problem is often difficult as the number of parameters can be
very large and each function evaluation is computationally
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expensive. Further, most discrete-space search methods do
not scale well with the number of parameters.
For small parameter sets, ranking and selection-based proce-
dures such as Optimal Computing Budget Allocation (Chen
and Lee (2010)) have been effectively applied. When the
number of parameters is large, an exhaustive evaluation of
all design points is infeasible. The goal then is to find the
best possible solution within a finite computational budget,
rather than the global optimum. In such a case, random-
ized search techniques such as simulated annealing and ge-
netic algorithms or heuristic-based local search methods such
as Tabu search have been employed. A detailed survey of
simulation optimization approaches can be found in Swisher
et al. (2000). Discrete-space variants of continuous optimiz-
ers such as Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) have also been proposed wherein the param-
eter estimate is projected back to the discrete space at each
iteration (see Whitney et al. (2001) and Bhatnagar and Kow-
shik (2005)). In all of the above methods, the objective func-
tion evaluation is limited strictly to points in the original dis-
crete domain.

A Continuous-space Embedding Approach:

If the discrete parameter space can be embedded into a larger
continuous space by using some form of interpolation, the
optimization problem can be solved by directly applying
descent-based continuous-space methods. Such continuous
optimizers often scale well with respect to the number of pa-
rameters, in comparison to discrete-space methods. This is
because gradient information can be utilized at each step to
converge rapidly to local minima. To search for a global op-
timum, random multi-starts can be used. The solutions thus
found in the continuous domain are projected back to the dis-
crete domain (for example, using nearest-neighbour round-
ing). Let ΩC ⊂ Rn denote the convex hull of the original
discrete space ΩD. An embedding of the discrete parame-
ter space into a continuous one is essentially an interpolation
(say f̂ ) of f defined over ΩC . If f̂ can be constructed in a
computationally efficient manner and has a suitable structure
(that is, f̂ is continuous, piece-wise smooth, has few local
minima) then continuous optimizers applied directly over f̂
can be expected to perform well.
Such an embedding-based approach was shown to be ef-
fective in the optimization of queueing and inventory sys-



tems in the past (see Lim (2012) and Wang and Schmeiser
(2008)). However the embedding reported in existing lit-
erature was achieved via spatial interpolation (for instance,
using piece-wise simplex interpolation) which requires mul-
tiple simulations to be performed at each parameter point.
More concretely, given some point Y ∈ ΩC , and a set of
points X1, X2, . . . , Xp ∈ ΩD in the neighbourhood of Y ,
the interpolated objective value f̂(Y ) can be computed as a
weighted average of the values f(X1), f(X2), . . . , f(Xp),
each of which is obtained via a single simulation. Thus p
simulations are required to estimate the interpolated value.
For linear interpolation, p = 2n and for piece-wise simplex
interpolation, p ≥ n + 1. Thus, spatial interpolation as a
means of embedding is computationally expensive.
Instead, this paper presents an embedding technique
which requires a single simulation to measure the inter-
polated value at a given point in the continuous domain
(irrespective of the number of parameters). The technique
is based on a randomization of the simulation model and is
applicable when the objective f is composed of long-run av-
erage measures. To perform the embedding, each parameter
in the model is perturbed periodically and assigned values of
a discrete random variable, instead of a fixed constant value
over a single simulation run. Now, the distribution of this
random variable can be varied continuously, even though the
model parameter itself is discrete-valued. The value of the
objective function measured using a single, long simulation
of this randomized model directly gives us the interpolated
objective value. In essence, the technique relies on an averag-
ing in time, in contrast to spatial interpolation methods which
perform an averaging over the parameter space. We describe
the embedding technique in more detail in the following sec-
tion. In this paper, we present a theoretical justification for
the randomization-based embedding technique and describe
its application to discrete-time queueing systems.

Related Work and Our Contributions

The use of randomization for embedding discrete-valued pa-
rameters in a simulation model was reported by Karanjkar
and Desai (2015) for the design optimization of multi-core
systems, however without a theoretical justification. A the-
oretical basis for such a technique was introduced by Bhat-
nagar et al. (2011) in the context of two specific algorithms
for solving the DPSO problem. This work proposed vari-
ants of two continuous optimizers wherein the parameter es-
timate at each iteration is projected back to the discrete space
probabilistically (rather than in a deterministic manner) and
showed that this essentially produces a continuous embed-
ding of the underlying discrete-parameter process. The work
focused on the optimization algorithms and the embedding
technique itself was not explored in depth.
The focus of the current paper is on the randomization-based
embedding technique itself. We present a general randomiza-
tion scheme and prove that it produces continuous interpola-
tions of the objective. The proof extends (Bhatnagar et al.
2011; Lemma 3) by relaxing the assumption on the ergod-

icity of the constituent Markov chains, making the analy-
sis applicable to a wider set of parameters and systems (in-
cluding systems with transient and/or periodic states), such
as the examples considered in this paper. We then describe
the application of the embedding technique to discrete-time
(slotted) queues for embedding queue-capacity, number of
servers and service-time parameters into a continuous space.
Such queues are of importance in several applications such
as communication networks, manufacturing lines and trans-
portation systems (see Alfa (2015)). To demonstrate the util-
ity of the embedding technique, we consider the optimization
of a queueing network with 7 parameters. We observe that
a randomization of the simulation model produces continu-
ous, smooth embeddings of the objective and two continu-
ous optimizers applied directly over this embedding perform
favourably in comparison to a direct discrete-space search
method. However the focus of the current paper is on the em-
bedding technique itself, rather than on specific optimization
methods. In-fact, once an embedding has been achieved, a
rich set of existing continuous optimizers become applicable
to the original discrete-parameter problem. A detailed per-
formance comparison between discrete-space methods and
continuous optimizers applied over an embedding can be
the topic for future research and is beyond the scope of
the current paper. In summary, this paper introduces the
randomization-based embedding technique as a useful tool in
the optimization of queueing networks over discrete parame-
ters. The simulation models and scripts used in this work are
available in an online repository (see Karanjkar (2017)).

RANDOMIZATION-BASED EMBEDDING

Consider a system with n integer-valued parameters and let
X = (x1, x2, . . . , xn) denote the parameter vector, where
each xi can take values from some finite set Di consisting
of successive integers. The set of all possible values that X
can take is the n-dimensional discrete parameter space ΩD

which, in this case is the Cartesian product ΩD =
∏n

i=1Di.
Given a point X ∈ ΩD, our simulation model allows us to
measure the value of some long-run average objective f(X).
Let ΩC denote the convex hull of ΩD. We wish to obtain
the interpolation f̂ : ΩC → R of f , and measure its value
at a given point Y ∈ ΩC . Let Y = (y1, y2, . . . , yn). Thus
the ith parameter needs to be assigned a value yi ∈ R in the
embedded model.

To obtain f̂(Y ), we construct a randomized version of the
model where the value of each parameter in the model is per-
turbed periodically (for example, at the beginning of each
time-slot) and assigned values of a discrete random variable
which we denote as γ. For each i ∈ {1, . . . , n}, the ith pa-
rameter in the model is assigned values of the random vari-
able γi(yi). The random variable γi is chosen in such a way
that its moments can be made to vary continuously with re-
spect to the parameter yi, and γi(yi) = yi with probability 1
whenever yi ∈ Di. The simplest example of such a random



variable is:

γ(y) =

{
byc with probability α(y)
dye with probability 1− α(y)

where α(y) = dye − y
(1)

For instance, if yi = 10.3, then at each time-slot the param-
eter will take the value 11 with probability 0.3 and the value
10 with probability 0.7 so that its average value over a single
simulation run would be 10.3. All parameters in the model
are embedded simultaneously and assigned values of inde-
pendent random variables γ1(y1), γ2(y2), . . . γn(yn). Let f̂
be the long-run average measure obtained by simulating such
a randomized model. f̂ is now a function of Y . Further,
f̂(Y ) = f(Y ) when Y ∈ ΩD by definition. Thus f̂ is an
interpolation of f . As each parameter in the model can be
embedded independently, the interpolated value can be com-
puted using a single simulation of the randomized model.
Thus, the interpolation is achieved by averaging over time,
instead of space.

ANALYSIS

In this section we present a general randomization scheme
and prove that it produces continuous interpolations of the
long-run average objective. Consider the ith parameter in
the model which can take integer values from the set Di. Let
Di = {x1

i , x
2
i , . . . , x

p
i } and let Ci ⊂ R denote the range

[x1
i , x

p
i ]. To embed the ith parameter into a continuous space

and assign to it some value yi ∈ Ci, we perturb the param-
eter periodically and assign to it values of a discrete random
variable γi(yi). In general, the random variable γi can have
a multi-point distribution, taking values from the set Di. Let
α1
i , α

2
i , . . . , α

p
i be a set of functions which map values from

the domain Ci to the range [0, 1] such that:

•
∑p

k=1 α
k
i (y) = 1 ∀y ∈ Ci, (2)

• αk
i (y) = 1 when y = xki for k ∈ {1, 2, . . . , p}, (3)

• α1
i , . . . , α

p
i are continuous at all points in Ci. (4)

The random variable γi(y) then has the distribution:

γi(y) = xki with prob αk
i (y) for k ∈ {1, 2, . . . , p}. (5)

There are an infinite number of choices for the set of func-
tions {α1

i , . . . , α
p
i } that satisfy conditions (2) to (4). We illus-

trate one example of such a set in Figure 1. (In general, the
shape of these functions will affect the resulting interpola-
tion f̂ .) LetX1, X2, . . . , Xm be points in the n-dimensional
discrete parameter space ΩD. At each parameter point Xj

we assume that the behavior of the system can be described
as a stationary Markov chain with a finite state-space S and
a transition probability matrix P j . Such a chain will have
a unique stationary distribution (that is, a unique value of
the distribution π which satisfies πP j = π) unless it con-
tains two or more closed communicating classes. We assume
that at each point Xj ∈ ΩD the corresponding chain con-
tains exactly one closed communicating class and therefore
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Figure 1: An example for the set of functions α1
i , α

2
i , . . .

that satisfy conditions (2)-(4) over the domain Di =
{1, 2, . . . , 5}. At a given point y = yi, αk

i (yi) represents
the probability with which the random variable γi takes the
value k. For example, at y = 2.8 indicated by the dashed
line, α2

i = 0.2 and α3
i = 0.8 whereas αk

i = 0 for k /∈ {2, 3}.

has a unique stationary distribution πj . The chain is not re-
quired to be ergodic and may contain periodic states and/or
some transient states. Further, we assume that the chains at
X1, . . . , Xm all share a common state-space S . Note that it
is permissible for the subset of states forming a closed com-
municating class at points Xi and Xj to be different or alto-
gether non-overlapping for i 6= j.
Let c : S → R be a cost function that assigns a fixed cost
to every occurrence of a state in the Markov chain. Let πj

s

denote the probability of occurrence of a state s ∈ S under
the distribution πj . The long-run average cost f at the point
Xj can then be defined in terms of the stationary distribution
as follows:

f(Xj) =
∑
s∈S

πj
sc(s). (6)

Now consider the randomized model at Y =
(y1, y2, . . . , yn) ∈ ΩC where the ith parameter in
the model is assigned values of the random variable
γi(yi). Here γ1, γ2, . . . , γn are independent random
variables with the distribution given by Equation (5).
We assume that all parameters in the model are per-
turbed at identical time instants. Let the set of functions
{αk

i : Ci → [0, 1] | i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , |Di|}}
used during randomization, be continuous and have K
continuous derivates, where K is some non-negative integer
(that is, let each function be of differentiability class CK

where K ∈ {0, 1, 2, . . . }.) Let f̂ : ΩC → R be the
corresponding long-run average measure of the randomized
model. Then, we show that the following statement is true:



Theorem 1. f̂ is a continuous interpolation of f and also
belongs to differentiability class CK .

Proof. The n-dimensional vector of parameter values at any
instant of time is itself a random variable Γ whose distribu-
tion is a function of Y as follows:

Γ(Y ) = Xj with prob βj(Y ) for j ∈ {1, 2, . . . ,m}.
(7)

where m is the total number of points in the discrete design
space (m =

∏n
i=1 |Di|). Let Xj = (xj1, x

j
2, . . . , x

j
n) be a

point in ΩD and let Ii(x) denote the index of element x in
the set Di. The coefficients βj can then be obtained as:

βj(Y ) =

n∏
i=1

P(γi(yi) = xji ) =

n∏
i=1

α
Ii(x

j
i )

i (yi). (8)

From equations (8) and (4) it follows that the functions
β1, β2, . . . , βm which map values from the domain ΩC to
the range [0, 1] also satisfy the following conditions:

•
∑m

j=1 β
j(Y ) = 1 ∀Y ∈ ΩC , (9)

• βj(Y ) = 1 when Y = Xj for j ∈ {1, 2, . . . ,m} , (10)

• β1, . . . , βm are continuous at all points in ΩC . (11)

Let P (Y ) denote the transition probability matrix of the ran-
domized model. We choose the time instants at which to per-
turb the parameter values in such a way that P (Y ) is given
by

P (Y ) =

m∑
j=1

βj(Y )P j . (12)

In a discrete-time system, this can be achieved in a straight-
forward manner by perturbing the parameter values at the
beginning of each time-slot. From (12) and (11) it follows
that P (Y ) is continuous with respect to Y . We now refer
to a result from (Schweitzer 1968; Section 6) which states
that: If PA is the transition probability matrix of a finite
Markov chain containing a single irreducible subset of states
(a single closed communicating class), then for an arbitrary
stochastic matrix PB with the same state-space as PA, the
randomized stationary Markov chain with transition proba-
bility matrix

P (λ) = (1− λ)PA + λPB 0 ≤ λ < 1

will also possess a single irreducible subset of states. Fur-
ther, P (λ) has a unique stationary distribution π(λ) which
is infinitely differentiable with respect to λ for λ ∈ [0, 1).
In Equation (12) P 1, P 2, . . . , Pm each have a single irre-
ducible set of states. Therefore the stationary distribution
π(Y ) corresponding to P (Y ) exists and is infinitely differ-
entiable with respect to the coefficients β1(Y ), . . . , βm(Y )
and K-times continuously differentiable (CK) with respect
to Y . Let πs(Y ) denote the probability of occurrence of a
state s under the distribution π(Y ). The long-run average
cost f̂ in the randomized model is given by:

f̂(Y ) =
∑
s∈S

πs(Y )c(s)

The function f̂ is also CK with respect to Y . From equa-
tions (7) and (10) we have Γ(Y ) = Xj with probability 1

when Y = Xj for j ∈ {1, 2, . . . ,m}. Thus f̂(Y ) = f(Y )

whenever Y ∈ ΩD. Therefore f̂ is a CK interpolation of
f .

Thus we have shown that a randomization of the simulation
model can be used as a means of producing continuous inter-
polations of the long-run average measure f under the listed
assumptions. It should be noted that for f̂ to be of class CK ,
it is sufficient but not necessary for the coefficient functions
α1
i , α

2
i , . . . to be CK functions. For instance, it may be pos-

sible to obtain a continuously differentiable interpolation f̂
using coefficient functions that are continuous but not differ-
entiable at the integer points.

APPLICATION TO DISCRETE-TIME QUEUES

In this section we describe the application of the embed-
ding technique to discrete-time queues for embedding queue-
capacity, number of servers and service-time parameters into
a continuous space and present simulation results for several
concrete examples.
We assume that in each slot, jobs arrive into the system near
the beginning of a slot and depart towards the end of the slot.
At-most one job can arrive within a single slot. S0 denotes
the initial state of the queue and St denotes the state mea-
sured at the end of slot t. For job arrivals with geometrically
distributed inter-arrival times (denoted Geo) the probability
of a job arriving in a slot is denoted as p. For geometrically
distributed (Geo) service times, the probability of the server
finishing an ongoing job in the current slot (irrespective of
the amount of time for which the job has already received
service) is denoted as q. For a deterministic server (denoted
D), every job takes a constant amount of time to be processed
by the server. The number of slots taken to process a job is
denoted as T .
For performing the randomization, we will use a more gen-
eral form for the random variable γ, which was first intro-
duced in Equation (1) as follows:

γ(y) =

{
byc with probability α1(y) = α(y)
dye with probability α2(y) = 1− α(y)

where α(y) =


dyes − ys

dyes − bycs
when y /∈ Z

0 when y ∈ Z
(13)

where s ∈ R is a constant. It can be seen that the probability
functions α1(y) and α2(y) will satisfy the conditions (2)-(4)
for s 6= 0.

Embedding Queue-Capacity

Consider a Geo/Geo/1 queue with finite buffering. The queue
state St is the number of jobs in the queue at the end of slot t.
The queue has a capacity parameter C ∈ N that we wish to
embed into a continuous space. We first define the behavior
of the queue with respect to C as follows:
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Figure 2: Interpolation produced using the randomization-
based embedding technique for a finite-capacity Geo/Geo/1
queue. The embedded parameter y is the queue-capacity and
f̂(y) is the blocking probability of the queue. (Simulation
length=104 slots, p = 0.5, q = 0.51).

Definition 1. A job arriving in slot t is allowed to enter the
queue if St−1 < C, else the job is lost.

By defining the capacity parameter in this way, we ensure
that the Markov chains corresponding to every possible value
of C share the same state-space. For a queue with a con-
stant value of C, the states {St | St > C} are transient
and unreachable from states {St | St ≤ C}. The definition
also makes it intuitive for the parameter C to be updated dy-
namically within a simulation, in the randomized model. Let
f : N → R be some long-run average measure of this sys-
tem expressed as a function of the capacity parameter C. We
wish to embed the capacity parameter into continuous space,
and evaluate the interpolation f̂(y) of f at some given point
y ∈ R≥1. To do so, we construct a randomized model where
the capacity parameter is perturbed at the beginning of each
slot and assigned the value of the random variable γ(y) as
described in Equation (13) with s = −1. Let Ct denote the
instantaneous value of the capacity parameter for the dura-
tion of slot t. By the definition of the capacity parameter
above, whenever the parameter is updated the jobs already
present in the queue are not disturbed. The updated value of
the parameter is used solely to decide if a new job should be
accepted into the queue. Thus it is possible that St > Ct at
some time instants t.
In Figure 2, we show the simulation results obtained with this
randomization scheme. We fix the arrival and service prob-
abilities p, q and sweep the queue capacity parameter y in
steps of 0.05. The interpolated function f̂(y) is the blocking
probability (probability of an arriving job being denied entry
into the system). Each point in the plot is the mean value
of f̂(y) measured using 100 simulation samples with distinct
randomization seeds. The shaded area around the plot repre-
sents the ±3 standard-deviation interval.
We observe that a randomization of the model produces a
smooth interpolation of the objective. The standard devia-
tion values (which represent the simulation error) are similar
at the discrete and the interpolated points, indicating that the
stochastic error contributed by the randomization is negli-
gible. The computational overhead of the embedding, con-
tributed primarily by the additional calls to a random num-

ber generator, was found to be between 5% to 10%. The
overhead was computed as the relative difference between
the time per simulation for the original discrete-parameter
model (at some y = y0 ∈ N) and the randomized model
(at y0 + 0.5). This overhead is very small in comparison to
the computational cost involved when using spatial interpo-
lation.
Thus a smooth embedding of the queue capacity parameter
could be obtained efficiently through a randomization of the
simulation model.
The shape of the interpolation curve is sensitive to the choice
of the interpolation coefficients α1(y), α2(y), and thus the
value of the parameter s used for generating these coeffi-
cients. For most of the examples considered in this study,
we observe that setting s = 1 results in a smooth interpola-
tion. For other examples, we have tuned s to obtain a smooth
interpolation. It may be possible to arrive at the best random-
ization settings (the choice of the functions αk) analytically
rather than through tuning. However this is beyond the scope
of the current work and can be an interesting direction for
future study.

Embedding the Number of Servers

Consider a Geo/Geo/K queue. The queue has infinite buffer-
ing andK identical, independent servers working in parallel.
We wish to embed the parameter K ∈ N into continuous
space. To do so, we first re-define the system behavior as
follows:

Definition 2. The system consists of a single, infinitely fast
controller with a parameter K, and a fixed large number
(> K) of identical, independent servers. In each time-slot,
the controller pulls jobs from the head of the queue and as-
signs each job to a free server, as long as the queue is not
empty and the number of jobs currently receiving service is
less than K.

Note that for a fixed (integer) value of K, this description is
identical to a queue with K independent servers. However,
the new definition of the queue behavior makes it intuitive
for the controller parameter K to be updated dynamically.
To embed K into continuous space and evaluate the interpo-
lation at some point y ∈ R≥1, we construct a randomized
model where K is perturbed at the beginning of each slot
and assigned the value of the random variable γ(y) defined
in Equation(13) with s = 1. By the definition above, when-
ever the parameter K is updated, the jobs already receiving
service are not disturbed and the updated parameter value is
used solely for deciding if service can commence for new
jobs.
In Figure 3, we show the interpolation obtained using this
scheme. We fix the arrival and service probabilities p, q and
sweep the parameter y in small steps (the step-size is chosen
to be smaller near the knee region). The interpolated function
f̂(y) is the average number of jobs in the system. Each point
in the plot is the mean value of f̂(y) measured using 100
simulation samples. We observe that a randomization of the
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Figure 3: Interpolation results for embedding the number of
servers (K) in a Geo/Geo/1/K queue. The embedded param-
eter y = K is the number of servers and the interpolated
function f̂(y) is the average number of jobs in the system.
(p = 0.5, q = 0.51, simulation length= 104 slots)

model produces smooth interpolations of f in a Geo/Geo/1/K
queue. Similarly, for a queue with a deterministic service
time (a Geo/D/1/K queue), a smooth interpolation was ob-
tained using the same randomization settings.

Embedding Service Time

Consider a Geo/D/1 queue. The server is deterministic with
a fixed service time of T ∈ N slots. To embed the parameter
T into continuous space, we first define the server behavior
as follows:

Definition 3. The server has a parameter T . At the end of
each slot, the server ends jobs that have already received
≥ T slots of service.

To embed T into continuous space and evaluate the interpo-
lation at some point y ∈ R≥1, we construct a randomized
model where T is perturbed at the beginning of each slot and
assigned the value of the random variable γ(y) defined in
Equation (13) with s = 1. In Figure 4, we show the interpo-
lation obtained using this randomization scheme. We fix the
arrival probability p and sweep the service time parameter y
in steps of 0.05. The interpolated function f̂(y) is the aver-
age number of jobs in the system. Each point in the plot is
the mean value of f̂(y) measured using 100 simulation sam-
ples. The randomization produces a smooth interpolation of
f .
Using the approach described in this section, multiple dis-
crete parameters in a model can be embedded simultaneously
and independently of each other, and existing continuous op-
timizers can be applied over such an embedding.

AN OPTIMIZATION CASE STUDY

To demonstrate the utility of the embedding technique, we
present an optimization case study for a queueing network
shown in Figure 5. We optimize this queueing network us-
ing the embedding-based approach described in this paper
and compare its performance to a direct discrete-space search
method. Although the focus of this paper is on the embed-
ding technique itself (and not on a comparison between op-
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Figure 5: Queueing network to be optimized

timization algorithms), the preliminary results obtained for
this case-study indicate that descent-based continuous opti-
mizers can be effectively applied over the embedding and
may perform significantly better in comparison to discrete-
space methods.
Problem Statement: The queueing network in Figure 5 con-
sists of three nodes n1, n2 and n3. Each node ni has a queue
with a finite capacity Ci in front of it. Jobs arrive at n1 with
geometrically distributed inter-arrival times (with an arrival
probability p). An arriving job that finds the queue full is
lost. The node n1 consists of a single deterministic server
with a service time of T1 slots. This server forwards each
job to either n2 or n3 with equal probabilities, and stalls if
the destination queues are full. Nodes n2 and n3 respec-
tively consist of K2 and K3 identical servers working in par-
allel. The servers in n2 have geometrically distributed ser-
vice times (with service probability q2) whereas those in n3

are deterministic, with a service time of T3 slots. The servers
in T3 are prone to faults. The probability of a job turning
out faulty (denoted β) is inversely related to the service time
(β = 1/T3). A job that has received faulty service is sent
back to node n1 to be re-processed as a fresh job. If the des-
tination queue at n1 is full, the corresponding server in n3

stalls. The arrival probability p and the service parameter q2

are kept fixed (p = 0.5, q2 = 0.1). The parameter set for this
system is {C1, C2, C3, T1, T3,K2,K3}. Each parameter can
take integer values between 1 and 10. Thus the parameter
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Figure 6: The interpolated objective function f̂ (obtained via
simulation of the queueing network in Figure 5) plotted along
2-dimensional slices of the parameter space.

space has 107 design points.
Objective Function: Let X denote the vector of parameter
values and ΩD denote the set of all possible values thatX can
take. We define the objective function f(X) as a weighted
sum of throughput and cost components. The throughput
component, denoted T (X) is the expected value of the long-
run average throughput of the system (estimated using simu-
lation). The cost component, denoted C(X) is modeled us-
ing a synthetic function as follows:

C(X) = (C1 + C2 + C3) +
20

T1
+ 100K2 + 20

K3

T3
. (14)

Thus the cost increases with increasing buffer sizes and
the number of servers, and reduces with increasing service-
times. The objective function to be minimized is a weighted
sum of the normalized cost and throughput components, de-
fined as follows:

f(X) =
C(X)

max
j∈ΩD

C(j)
− T (X)

p
(15)

Since an exhaustive evaluation of f over all 107 design points
is infeasible, our goal is to find the best solution possible
within a fixed computational budget. To solve this optimiza-
tion problem, we first embed the discrete parameter space
into a continuous one by randomizing each parameter in the
model using the technique described in the previous section.
To understand the nature of the resulting interpolation (in
terms of continuity, convexity and smoothness), we plot the
interpolated objective along arbitrary 2-dimensional slices of
the 7-dimensional domain. Figure 6 shows the interpolated
objective f̂ plotted along two such slices. The plots were
obtained by sweeping two parameters at a time (in steps of
0.25) while keeping the other parameter values fixed. Each
point on this plot is obtained via a single simulation of the
randomized model of length 104 slots. Along each slice, the
interpolation is found to be reasonably smooth. The plots
obtained along several other slices in the domain were simi-
lar, indicating that the interpolation obtained via the random-
ization is well-suited to the application of continuous-space
optimizers.
We evaluate the performance of two continuous optimizers,
COBYLA (Powell (1994; 2003)) and SPSA (Spall (1992))

applied directly over the randomization-based embedding
and compare their performance against a discrete-space ver-
sion of SPSA (Whitney et al. (2001)) applied over the orig-
inal discrete-parameter model. While discrete-parameter
variants of SPSA exist, COBYLA has not been convention-
ally applied in the discrete-parameter case. This fact illus-
trates the utility of our embedding technique, which makes
it possible for a large set of existing continuous optimizers
to be applied for solving discrete-parameter problems. Both
COBYLA and SPSA were chosen as they do not require an
explicit computation of numerical derivatives along each pa-
rameter axis and are thus suited to high dimensional prob-
lems. Further, both methods are suited to problems where
the objective function evaluations can be noisy. The settings
for each optimizer were selected via tuning and were identi-
cal across the continuous and discrete versions of SPSA.

Results: For each optimization method, we perform 100 op-
timization runs using distinct, randomly chosen initial points.
The set of initial points is fixed and is common across all
three optimization methods. For each optimization run we
set an upper limit of 1000 objective evaluations. At each
objective function evaluation, the system throughput is mea-
sured using a single simulation of the randomized model (of
length 104 slots) and the cost is computed analytically using
Equation (14). At the end of each optimization run, we round
the solution to the nearest integer point, and record the ob-
jective value at this point. Table 1 presents the performance
results for the three methods measured across 100 optimiza-
tion runs. The results show that COBYLA shows the best
performance, both in terms of the quality of the solutions
and the convergence rate. The continuous-space SPSA per-
forms better in comparison to its discrete-parameter variant.
The solutions were found to be well-clustered. (Among the
top 20 solutions found by COBYLA, all were found to have
the parameter values T1 = 1, T3 = 10, and K2 = 3.) The
results indicate that existing continuous optimizers can be ef-
fectively applied over the embedding and their performance
compares favourably against direct discrete-space search.

COBYLA SPSA Discrete-SPSA
Objective value
at the optimum
(lower is better)

best -0.7130 -0.7108 -0.6842
avg -0.5240 -0.1994 -0.1964

std-dev 0.2930 0.3481 0.3358
Avg number of objective

function evaluations
per optimization run

52.7 1000 1000

Avg time per optimization
run (seconds)

0.15 2.94 2.33

Table 1: Performance of two continuous optimiz-
ers (COBYLA and SPSA) applied directly over the
randomization-based embedding, and a discrete-space op-
timizer (Discrete-SPSA) applied over the original discrete-
parameter space.



CONCLUSIONS

This paper presented a simple and computationally efficient
technique using which discrete parameters in queueing sys-
tems can be embedded into a continuous-space, enabling di-
rect application of continuous-space methods for simulation-
based optimization. The technique is based on a random-
ization of the parameter values in the simulation model and
is applicable to problems where the objective function is a
long-run average measure. Unlike spatial interpolation, the
interpolated value can be measured using a single simula-
tion of this randomized model irrespective of the dimension-
ality of the design space. We presented a theoretical basis
for this embedding technique and described its application to
discrete-time queues for embedding queue capacities, num-
ber of servers and service-time parameters into a continu-
ous space. We then demonstrated the utility of this embed-
ding technique via an optimization case study of a queue-
ing network with 7 parameters. A randomization of the sim-
ulation model produced reasonably smooth and continuous
interpolations of the objective. Two continuous-space opti-
mizers (COBYLA, SPSA) applied directly over this embed-
ding were found to perform better in comparison to a direct
discrete-space search (Discrete-SPSA).
The shape of the generated interpolation curves is affected
by the choice of the randomization settings (in particular, the
choice of the functions α1

i , α
2
i , . . . used during randomiza-

tion). For obtaining a smooth interpolation, we have per-
formed a tuning of these randomization parameters in the
current work. However, for some systems it may be possi-
ble to arrive at the best randomization scheme analytically,
and this can be a direction for future investigation. Further,
the effect of the perturbation interval on the generated in-
terpolation curves also needs to be investigated further. A
limitation of this embedding technique is that it may require
a modification of the simulation program. Some state transi-
tions that were not possible in the original (fixed-parameter)
model may now become possible when the parameter values
are randomized. These transitions have to be accounted-for
by the programmer.
In summary, this paper showed that the randomization-based
embedding technique can be a useful and effective tool in
simulation-based optimization of queueing systems. Future
work can extend the embedding technique to other kinds of
discrete-event systems such as inventory models.
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