
IIT Goa CS 212 (Computer Networks LAB)
Instructor: Dr. Neha Karanjkar

 Principles of Reliable Data Transfer

• Format for submitting solutions:

The solution is to be uploaded as:

▪ A typeset report in pdf format. The file should be named
<name>_Lab3_report.pdf, where name is of the person submitting the
solutions as it appears on google classroom. The quality of the report carries
significant weightage. Your report should be complete, correct, clear and
concise.

▪ A Python file named <name>_Protocol_rdt22.py containing your
implementation of the rdt2.2 protocol as asked in question 2. The code should
contain comments where appropriate to explain your logic.

▪ A Python file named <name>_Protocol_rdt3.py containing your
implementation of the rdt3.0 protocol as asked in question 3.

▪ Do not include any other files in your submission (such as the template files
provided by the instructor). Your implementation of the protocols must adhere to
the interface provided in the template. It should be possible for anyone to run the
simulation with the existing template, by only adding your protocol files to the
existing template folder and changing the name in the “import <protocol-file>”
line in the testbench.

1. Go through the Python code provided in the Template, and try to understand the
behavior of each block. The file Channel.py implements a model for an unreliable
channel over which packets can be corrupted or lost. This model has the following
parameters:

Pc: The probability of a packet being corrupted
Pl: The probability of a packet being lost
Delay: The time it takes for a packet to travel over the channel and reach the
receiver.

1

The file Protocol_rdt1.py implements the trivial protocol rdt1.0 which works only
if the channel is assumed to be ideal. Run the simulation first with Pc=0, and then
Pc=0.5. Check that the protocol fails in the second case, and list the failure symptoms.
[Note: The channel parameters such as Pc and Pl can be set in the file Testbench.py]

2. The file Protocol_rdt2.py implements the simple ACK/NAK based protocol
rdt2.0 that can work when data packets can get corrupted. Check that this protocol
indeed works by setting Pc>0 for the data-channel.
[Note: The protocol to be used can be specified in the file Testbench.py by modifying
the line from Protocol_rdt<version> import *]

3. For the testbench using Protocol_rdt2.py, modify the code such that:
a) The sending application generates a fixed total number of messages (say 1000), with

a fixed time interval between each message (say 3 units of time)
b) As soon as the protocol at the sending-side (rdt_Sender) receives positive

acknowledgements for all of the 1000 messages, the simulation ends, and a quantity
“T_avg” is printed as output, where T_avg is the time between sending a packet and
receiving a positive acknowledgement for it, averaged across all packets. This is, in
essence the Average Round-Trip Time (RTT avg).

(Note that you need to run each simulation as long as necessary for all 1000
messages to be acknowledged.)

You would expect that T_avg should increase with Pc, but in what manner? (linearly?
exponentially? geometrically?). Obtain a plot of T_avg versus Pc for (0<=Pc<=0.9) and
explain what trend you observe and why.

4. Protocol_rdt2.py will not work if ACK/NAK can also get corrupted. Check this by
setting Pc>0 for the ack-channel and state the symptoms you observe.

5. Develop an alternating-bit protocol as described in K&R (rdt_2.2) which can work even
when both the data and ack packets can get corrupted. Test that your protocol works by
simulating for a large amount of time or a large number of packets sent, with Pc>0 for
both the data and ack channels. You need to submit only the protocol as a file named
Protocol_rdt22.py.

6. The protocol rdt2.2 will not work if packets can be lost.

2

a) Check this by setting Pl>0 in the testbench with your implementation of
Protocol_rdt22. What failure symptoms do you observe?

b) Implement an alternating-bit protocol with Timeouts (rdt3.0) that can work when
data or ack packets can be corrupted or lost. Set the timeout value to 3*Delay. Test
that your protocol indeed works by simulating for a large amount of time or a large
number of packets sent, with Pc>0 and Pl>0 for both the data and ack channels. You
need to submit the protocol as a file named “Protocol_rdt3.py”.

[Hint: To implement timeouts, you may need to model a Timer in SimPy. A
“skeleton” for implementing such a timer is provided here in Appendix A .]

c) You would expect that T_avg (defined the same way as in question 1) would increase
with Pl. For your implementation of the rdt3.0 protocol, with channel Delay=2,
Pc=0.2, timeout=3*Delay and total packets generated =1000, plot T_avg versus Pl.

d) [BONUS QUESTION] For the scenario where packet loss is possible (assume
Pc=0), derive an analytical expression for how T_avg should vary with Pl. Check if
the trend observed from simulations matches this.

e) Protocol rdt3.0 will not work if packets can be re-ordered over the channel. This can
be easily modeled by setting the channel delay for each packet to be a randomly
chosen number instead of having the same value for all packets. Thus, packet-2 sent
after packet-1, might experience a lower delay and arrive ahead of a packet-1 at the
receiver. Implement this feature in the model, and check if the rdt3.0 protocol indeed
fails. In your report, show the code snipette that models this packet reordering.

3

APPENDIX A : SimPy Template for implementing Timeouts

Here is a “skeleton” code for modeling timers and timeout events for
the rdt_Sender

class rdt_Sender(object):

 def __init__(self,env):

 # additional timer-related variables
 self.timeout_value=10
 self.timer_is_running=False
 self.timer=None

 # This function models a Timer's behavior.
 def timer_behavior(self):
 try:
 # Start
 self.timer_is_running=True
 yield self.env.timeout(self.timeout_value)
 # Stop
 self.timer_is_running=False
 # take some actions
 self.timeout_action()
 except simpy.Interrupt:
 # upon interrupt, stop the timer
 self.timer_is_running=False

 # This function can be called to start the timer
 def start_timer(self):
 assert(self.timer_is_running==False)
 self.timer=self.env.process(self.timer_behavior())

 # This function can be called to stop the timer
 def stop_timer(self):
 assert(self.timer_is_running==True)
 self.timer.interrupt()

 def timeout_action(self):
 # add here the actions to be performed
 # upon a timeout
 ...

 def rdt_send(self,msg):
 # whatever actions should go here

 def rdt_rcv(self,packt):
 # whatever actions should go here

4

