
IIT Goa CS 212 Computer Networks
Instructor: Dr. Neha Karanjkar

LAB 3: Socket Programming using Python

PART 1: UDP SOCKETS [5 points]

1. Study the template provided for using UDP sockets in Python (files UDP_Server.py and
UDP_Client.py). Make sure that you understand the purpose of UDP sockets, and the
steps for creating and using these sockets. Run the Client and Server processes and
observe the output.

2. Run the Client and the Server processes on different computers and check if they work
as expected (you will need to specify the server’s IP address).

To get a different computer with a visible IP address, you could either use a
laptop/mobile phone in the same network OR use Amazon Web Service AWS EC2 (a
free account will get you a linux machine with a public IP address). If you do not have
access to another computer with a reachable IP address, you can skip this question.

3. Design and implement a Client-Server system that uses UDP sockets to do the
following:

◦ The client sends the server a request. The request string can either be:
“SEND_DATE” or “SEND_TIME”.

◦ The server runs in a infinite loop where it keeps waiting for requests. Whenever
it sees a request, it responds by sending either the current DATE or the current
TIME in (HH:MM:SS) format as specified in the request.

◦ When the Client receives a response, it prints it.

◦ The Client runs in a loop where it generates multiple such requests, and the time
between successive requests varies randomly between 1-2 seconds.

HINT: You can use the following line of code to generate a random amount of
delay, uniformly distributed between 1-2 seconds:

1

PART 2: TCP SOCKETS [5 points]

4. Study the template provided for using TCP sockets in Python (files TCP_Server.py and
TCP_Client.py). Make sure that you understand the purpose of TCP sockets and the
steps for creating and using these sockets. Observe the differences between UDP and
TCP sockets and the steps for their use. Run the TCP Client and Server processes and
observe the output.

5. Start up Wireshark and apply a filter such that only the traffic generated by your Client
and Server processes is displayed. Identify the messages used by TCP during the
Handshake and the actual text sent by the two processes. Are the “contents” of the
packet (the message strings) visible within Wireshark? (This is what we’d expect since
the strings aren’t encrypted before sending.)

6. Design and implement a Client-Server system that uses TCP sockets to do the
following:

◦ The client initiates communication with a Server by sending the server it’s name.
(Choose some name for your client process). The Server remembers this name for
the entire duration of the communication session.

◦ The client then runs in an infinite loop where its accepts a line of input from the
user. The user is expected to enter a string consisting of two numbers and a simple
arithmetic operation (separated by spaces), for example: “12 + 42” or “3.24
- 45” or “4.5 / -6” . If the input is not correctly formatted, a warning is
displayed to the user. If correctly formatted, the Client sends this string to the
Server.

◦ The Server runs an infinite loop where it keeps waiting for requests from this client.
Upon receiving a request, the server prints the received message, computes the
answer by performing the arithmetic operation and sends it back as a string. The
Client prints the answer it received from the server.

2

import time, random
...
time.sleep(random.uniform(1,2))

◦ When the user wishes to stop, they enter “q”. The client process forwards the “q” to
the Server upon which the server ends the communication session and prints
“Session ended”. The Client processes stops.

7. When you decide upon a “format” for the messages that can be correctly understood by
the Client/Server processes, you have implicitly designed a “Protocol”. A protocol can
be “Stateful” of “Stateless”. Find out and understand what these terms mean. (Ref:
https://en.wikipedia.org/wiki/Stateless_protocol)

◦ Is the application-layer protocol designed by you for question 3 Stateless?
◦ Is the application-layer protocol designed by you for question 6 Stateless?
◦ Is TCP a Stateless protocol?
◦ Is UDP a Stateless protocol?

PART 3: Multiple Clients [Bonus Question, 5 points]

8. For systems such as those described in question 6, think of how you could modify the
Server so that it can handle multiple clients at the same time. For each connection
(using TCP sockets), the Server should provide the same service as described.

There are several ways to implement this. One way is to use mutiple threads for the
Server, one per connection. A skeleton for a multi-threaded server program can be found
in this answer on StackOverflow: https://stackoverflow.com/a/40351010/1329325

In this question, we wish to design such a multi-Client system to implement a “Chat
Room” as follows:

◦ The Client process acts like a chat window. It takes user input, sends appropriate
requests to the Server, and displays the messages sent by the server to the human
user.

◦ The Server process acts like a chat room manager. It allows client processes to
login to the chat room (each client needs to have a unique name). The server keeps
track of all the clients that are currently logged in. Whenever any interesting event

3

https://en.wikipedia.org/wiki/Stateless_protocol

happens, (such as new user logging in or leaving the chat room) the status is
broadcast to all connected clients. Also, whatever each user types is broadcast to all
clients.

◦ At the beginning, the user is requested for a “login name”. The client process then
sends a login request to the chat room (Server) with this name.

◦ After logging in, whatever lines the user types is broadcast to all clients along with
the sender’s name. The following lines show an example of output that might be
displayed to two different clients. Client 1 is the first to join the chat room.

4

Client 1

Enter login name:
> Batman

Server: time=10.01 Batman has joined. Member count=1
Server: time=11.01 Voldemort has joined. Member count=2
> Anyone here?
Voldemort: Crucio!
> Aaaaaaahrrhhhhhh..
> quit

Client 2

Enter login name:
> Voldemort

Server: time=11.01 Voldemort has joined. Member count=2
Batman: Anyone here?
> Crucio!
Batman: Aaaaaaahrrhhhhhh..
Server: time=13.01 Batman has left. Member count=1

